Semilinear Evolution Equations of Second Order via Maximal Regularity
نویسندگان
چکیده
منابع مشابه
Second Order Sufficient Optimality Conditions for Parabolic Optimal Control Problems with Pointwise State Constraints
In this paper we study optimal control problems governed by semilinear parabolic equations where the spatial dimension is two or three. Moreover, we consider pointwise constraints on the control and on the state. We formulate first order necessary and second order sufficient optimality conditions. We make use of recent results regarding elliptic regularity and apply the concept of maximal parab...
متن کاملMaximum Norm Analysis of Implicit–explicit Backward Difference Formulae for Nonlinear Parabolic Equations
We establish optimal order a priori error estimates for implicit– explicit BDF methods for abstract semilinear parabolic equations with timedependent operators in a complex Banach space setting, under a sharp condition on the non-self-adjointness of the linear operator. Our approach relies on the discrete maximal parabolic regularity of implicit BDF schemes for autonomous linear parabolic equat...
متن کاملA Convergence Analysis of the Peaceman-Rachford Scheme for Semilinear Evolution Equations
The Peaceman–Rachford scheme is a commonly used splitting method for discretizing semilinear evolution equations, where the vector fields are given by the sum of one linear and one nonlinear dissipative operator. Typical examples of such equations are reaction-diffusion systems and the damped wave equation. In this paper we conduct a convergence analysis for the Peaceman– Rachford scheme in the...
متن کاملNon-regularity in Hölder and Sobolev spaces of solutions to the semilinear heat and Schrödinger equations
In this paper we study the Cauchy problem for the semilinear heat and Schrödinger equations, with the nonlinear term f(u) = λ|u|αu. We show that low regularity of f (i.e., α > 0 but small) limits the regularity of any possible solution for a certain class of smooth initial data. We employ two different methods, which yield two different types of results. On the one hand, we consider the semilin...
متن کاملTornado Solutions for Semilinear Elliptic Equations in R: Regularity
We give conditions under which bounded solutions to semilinear elliptic equations ∆u = f(u) on domains of R are continuous despite a possible infinite singularity of f(u). The conditions do not require a minimization or variational stability property for the solutions. The results are used in a second paper to show regularity for a familiar class of equations.
متن کامل